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The Newtonian n-body problem: Suppose n bodies move in space
under their mutual gravitational attraction. Given their initial positions
and velocities, what is their future motion?

mi = mass of the i-th body
qi = position of the i-th body in R2 or R3

rij = ||qi − qj ||

Using Newton’s inverse square law, the force on the i-th body from the
j-th body is given by:

mimj

||qi − qj ||2
·

qj − qi

||qj − qi ||
Using F = ma, the differential equation that determines the motion of
the i-th body is:

mi
d2qi

dt2 =
n∑

j 6=i

mimj(qj − qi)

||qi − qj ||3
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Differential Equations

Goal: Find a function(s) (not a number!) which satisfies an equation(s)
involving some unknown function(s) and its derivative(s).

1. dy
dt = y

One Solution: y(t) = et

Are there others?

Yes! y(t) = 2et also satisfies the equation.

General Solution: y(t) = y0et , y0 ∈ R

Here, y0 = y(0) is an initial condition (eg. money in your bank account,
population of rabbits, etc.)
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2. d2y
dt2 = 0

One Solution: y(t) = 1

Another Solution: y(t) = t

General Solution: y(t) = v0t + y0 where y0, v0 ∈ R.
Note: y0 = y(0) and v0 = y ′(0)

3. d2y
dt2 = −y

One Solution: y(t) = sin t

Another Solution: y(t) = cos t

General Solution: y(t) = y0 cos t + v0 sin t where y0, v0 ∈ R.
Note: y0 = y(0) and v0 = y ′(0)
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The Kepler Problem

The case n = 2 can be reduced to a central force problem wherein one
body (the largest), is assumed to be fixed and the other body orbits
around it. This is commonly referred to as a Kepler problem.

~
Sun

r
Planet

The orbiting body will travel on a conic section (circle, ellipse,
hyperbola, parabola or line). Newton essentially invented Calculus to
prove this fact. It was initially discovered by Kepler (1571-1630) who
based his famous three laws on data (stolen?) from Tycho Brahe
(1546-1601).
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The Planar Three-Body Problem

m1ẍ1 =
m1m2(x2 − x1)

||q2 − q1||3
+

m1m3(x3 − x1)

||q3 − q1||3

m1ÿ1 =
m1m2(y2 − y1)

||q2 − q1||3
+

m1m3(y3 − y1)

||q3 − q1||3

m2ẍ2 =
m1m2(x1 − x2)

||q2 − q1||3
+

m2m3(x3 − x2)

||q3 − q2||3

m2ÿ2 =
m1m2(y1 − y2)

||q2 − q1||3
+

m2m3(y3 − y2)

||q3 − q2||3

m3ẍ3 =
m1m3(x1 − x3)

||q3 − q1||3
+

m2m3(x2 − x3)

||q3 − q2||3

m3ÿ3 =
m1m3(y1 − y3)

||q3 − q1||3
+

m2m3(y2 − y3)

||q3 − q2||3
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Integrals of Motion

m1ẍ1 + m2ẍ2 + m3ẍ3 = 0
m1ÿ1 + m2ÿ2 + m3ÿ3 = 0

m1x1(t) + m2x2(t) + m3x3(t) = a1t + b1

m1y1(t) + m2y2(t) + m3y3(t) = a2t + b2

The integration constants a1,a2,b1,b2 ∈ R are called integrals or
conserved quantities and are completely determined by the initial
conditions.

For the general n-body problem:

n∑
i=1

miqi(t) = at + b

The center of mass moves uniformly along a line.
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Other Conserved Quantities

n∑
i=1

qi(t)×mi q̇i(t) = Ω

Angular momentum Ω is conserved. In the spatial n-body problem, this
gives another three integrals of motion. In the planar problem, this
gives one conserved quantity.

The conservation of angular momentum can be derived by
differentiating the left-hand side with respect to t and obtaining 0.
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Define the momentum as pi = mi q̇i . Let

K =
1
2

n∑
i=1

mi ||q̇i ||2

U =
∑
i<j

mimj

||qi − qj ||

K is the kinetic energy and U is the Newtonian potential.
Equations of motion:

q̇i =
pi

mi
=

∂H
∂pi

ṗi =
∂U
∂qi

= −∂H
∂qi

where H = K − U is called the Hamiltonian. Since H is also conserved
throughout the motion, this gives 6 constants of motion in the planar
n-body problem and 10 in the spatial problem.
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Solutions with Singularities

Equations of motion:

mi
d2qi

dt2 =
n∑

j 6=i

mimj(qj − qi)

||qi − qj ||3

What happens if, for some time t = t∗, ||qi(t∗)− qj(t∗)|| = 0?

COLLISION!
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Singularities

Recall: rij = ||qi − qj || (distance between i-th and j-th bodies)

Let r(t) = min {rij(t) : i , j ∈ {1, . . . ,n}, i 6= j}.

Definition
If limt→t∗ r(t) = 0, then we say a singularity occurs at t = t∗.

Important observation: A singularity can result from a collision or a
non-collision. In other words, if r(t)→ 0, it does not necessarily follow
that rij(t)→ 0 for some pair i , j .

Painlevé (1895) showed that the only singularities in the three-body
problem are due to collisions.

Jeff Xia (1992, Annals of Mathematics) showed that non-collision
singularities exist in the 5-body problem.
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A Good Guess: Central Configurations

Definition
A central configuration (c.c.) is an initial configuration of bodies such
that the acceleration vector for each body is proportional to its position
vector. Specifically, for each index i ,

n∑
j 6=i

mimj(qj − qi)

||qj − qi ||3
= λmiqi

for some proportionality constant λ.

Released from rest, a c.c. maintains the same shape as it heads
toward total collision.
Given the correct initial velocities, a c.c. will rigidly rotate about its
center of mass. Such a solution is called a relative equilibrium.
Any Kepler orbit can be attached to a c.c. to obtain a new solution
to the n-body problem.
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3-Body Collinear Configurations (Euler 1767)
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Equilateral Triangle (Lagrange 1772)
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Regular n-gon (equal mass required for n ≥ 4)
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1 + n-gon (arbitrary central mass)
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Used by Sir James Clerk Maxwell in 1859 in Stability of the Motion of
Saturn’s Rings (winner of the Adams Prize)
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The Calculus of Variations

Goal: Find special planar periodic solutions using Hamilton’s principle
of least action. (Calculus on a space of curves.)

Let Σ = {q ∈ R2n : qi = qj for some i 6= j} (collision set). The
configuration space for the n-body problem is R2n − Σ. Let ΓT denote
the space of all absolutely continuous loops of period T in R2n − Σ.

The action of a path γ ∈ ΓT is

A(γ) =

∫ T

0
K (γ̇(t)) + U(γ(t)) dt

Amazing Fact: The principle of least action states that critical points
(extremals) of the action are solutions to the n-body problem!

Since K ≥ 0 and U > 0, A(γ) > 0. Moreover, as γ → Σ,U(γ)→∞.
Therefore, we typically seek to minimize the action.
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Problems Using Variational Methods
The configuration space R2n − Σ is not compact.

1 Minima might not exist. w

w

w
w

w
w
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Qk

�+

?

6

2 A minimizing trajectory may contain collisions. This occurs in the
Kepler problem where the minimizing solution is independent of
the eccentricity. The ejection/collision solution is an action
minimizer (Gordon 1970).
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Theorem
(Chenciner, Montgomery 2000) There exists a figure-eight shaped
curve q : (R/TZ) 7→ R2 such that

1 q(t) + q(t + T/3) + q(t + 2T/3) = 0 ∀t
(center of mass is at the origin.)

2 Symmetry

q(t + T/2) = −q̄(t), q(−t + T/2) = q̄(t) ∀t

3 (q(t + 2T/3),q(t + T/3),q(t)) is a zero angular momentum,
periodic solution to the planar 3-body problem with equal masses.

A solution where the n bodies follow each other along a single closed
curve with equal phase shift is called a choreography.
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Proof Outline:
Construct the orbit on the shape sphere, the space of oriented
triangles.

1 Search for minimizers over the class of paths Γ traveling from an
Euler central configuration (with say q3 at the center) to an
isosceles configuration (with say r12 = r13). This path will be
1/12th of the full periodic orbit.

2 Let Ac be the smallest possible action for a path with collisions in Γ
(compute via Kepler problem). Choose a simple test path
(constant speed and potential) and compute its action A
(numerically). Collisions are excluded by showing A < Ac .

3 The boundary terms of the first variation (integration by parts) and
the symmetries induced by equality of masses allows for eleven
copies of the minimizer to be fit together to create the full orbit.

4 A special area formula is used to reconstruct the motion in the
phase space. By showing that the angular momentum of any one
of the bodies vanishes only as the body passes through the origin,
this implies the curve is a figure eight.
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Figure: The first 12th of the figure-eight orbit (dotted), traveling from an Euler
collinear central configuration to an isosceles triangle.

Roberts (Holy Cross) 3-Body Problem Fitchburg State 21 / 32



Note: The figure-eight orbit is stable! This is quite a surprise.

The regular n-gon circular choreographies (equal mass) are all
unstable.
The Lagrange equilateral triangle solution is linearly stable only
when one mass dominates the others.

m1m2 + m1m3 + m2m3

(m1 + m2 + m3)2 <
1
27
.

If n ≥ 24,306, all equal mass relative equilibria are unstable.
The 1 + n-gon relative equilibrium is linearly stable iff the central
mass is at least 0.435n3.
All other known choreographies appear to be unstable.

On the other hand: Adding eccentricity to an unstable relative
equilibrium could make it linearly stable (eg. Lagrange equilateral
triangle)
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Some Other Remarks About the Figure-eight

Numerical experiments suggest that the probability of finding a
figure-eight is somewhere between one per galaxy and one per
universe.
While slight variations in the initial positions or velocities of the
figure-eight orbit do not alter the general shape of the eight,
varying the masses even by a tiny amount destroys the orbit.
The discovery of the figure-eight orbit and the variational
techniques used to prove its existence led to many, many more
wonderful orbits in the planar and spatial n-body problem. These
include "hip-hop" orbits, intricate choreographies, figure-eights
with an odd number of bodies, highly symmetric orbits and
solutions with unequal masses.
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Some Other Choreographies

Orbits numerically discovered by Carles Simó.
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Some Choreographies for the 5-Body Problem (Simó)
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More Choreographies for the 5-Body Problem (Simó)
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Non-symmetric Choreographies (Simó)
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The Planar, Circular, Restricted 3-Body Problem (PCR3BP)

Set up: Assume two large bodies (primaries) are traveling on circular
orbits. Insert a third, infinitesimal body (satellite, comet, space ship)
that has no influence on the two primaries. Change to a frame rotating
with the same speed as the primaries.

q1 = (1− µ,0),m1 = µ and q2 = (−µ,0),m2 = 1− µ (0 < µ ≤ 1/2)

Let a =
√

(x − 1 + µ)2 + y2, b =
√

(x + µ)2 + y2.

Equations of motion for the infinitesimal body (x , y):

ẋ = u ẏ = v
u̇ = Vx + 2v v̇ = Vy − 2u

where
V (x , y) =

1
2

(x2 + y2) +
µ

a
+

1− µ
b

+
1
2
µ(1− µ)

is the amended potential.
Roberts (Holy Cross) 3-Body Problem Fitchburg State 28 / 32



Figure: There are always five equilibria (libration points or Lagrange points) in
the PCR3BP.
http://map.gsfc.nasa.gov/mission/observatory_l2.html
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Figure: The level curves for the amended potential and the libration points.
http://map.gsfc.nasa.gov/mission/observatory_l2.html
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Solutions Cannot Travel on Level Curves

The following theorem is a generalization of Saari’s conjecture to the
PCR3BP.

Theorem
(GR, Melanson 2007) The only solutions to the planar, circular,
restricted three-body problem with a constant value of the amended
potential V are equilibria (libration points).

Corollary
(GR, Melanson 2007) It is not possible for a solution to the PCR3BP to
travel with constant speed without being fixed at one of the libration
points.
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Some Final Remarks

Although the n-body problem is challenging, the field of celestial
mechanics is full of interesting and accessible research problems
that have important applications to spacecraft transport and
understanding our universe. Some of these research problems
are accessible to motivated undergraduates!
A wide variety of branches of mathematics are used in the n-body
problem: multivariable calculus, linear algebra, differential
equations, analysis, dynamical systems, calculus of variations,
geometry, topology, algebraic geometry
Some of the greatest mathematicians have worked on the n-body
problem: Newton, Euler, Lagrange, Poincaré, Smale, Hénon,
Conley, ...
Thank you for coming! Thank you organizers!
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