
CSC336: Numerical Methods

Allison Lau (Instructor: Christina Christara)

Fall 2023

Contents

1 Introduction 2

2 Computer Arithmetic 2
2.1 (Human) Representation of Nonnegative integers 2
2.2 (Human) Representation of Reals . 3
2.3 Computer Representation of Numbers . 4
2.4 Data and Computational Error . 6

3 Solving Linear Systems 13
3.1 Gaussian Elimination . 13

3.1.1 Forward substitution algorithm for n× n lower-triangular matrices 13
3.1.2 Backward substitution algorithm for n× n upper-triangular matrices 14
3.1.3 Gauss Elimination . 15

3.2 LU Decomposition . 16
3.2.1 Symmetric Matrices . 18
3.2.2 Symmetric Positive Definite Matrices . 18
3.2.3 Banded Matrices . 19

3.3 LU Factorization for Computing the Inverse of a Matrix 19
3.4 Summary . 20
3.5 Gauss Elimination with Pivoting . 21

3.5.1 Scaling and GE/LU with Partial Pivoting 23
3.5.2 Complete Pivoting . 24
3.5.3 Effect of Pivoting to Special Matrices . 24

A Gauss Elimination algorithms 25

B Properties of Triangular Matrices 25

C Gauss Elimination (GE) and LU factorization with Pivoting Example 26

D Computer Arithmetic, Gauss Elimination (GE) and LU factorization Abridged 28
D.1 Computer Arithmetic . 28
D.2 GE/LU and Operation Counts . 29

1 Introduction 2

1 Introduction

Scientific computing involves observing phenomena and situations in the world, modelling
with measurements which may involve physical laws, restrictions, assumptions and simplifications,
building mathematical models with equations (where there might often not be an analytic solu-
tion), then simultion or approximate the solution with numerical methods or algorithms. This
gives results in values or functions, which then goes on to post processing which might be data
visualization. An important parameter is the size of the model. After this step, the data might be
interpreted in real world scenaios and evaluated on their correctness, which might then return to
the first step of the whole process. In this set of notes, we will discuss computer arithmetic, data
and computational erros, solving linear and nonlinear equations and interpolation.

2 Computer Arithmetic

2.1 (Human) Representation of Nonnegative integers

In general, an integer x can be represented in a base b system, where b ∈ Z+ as follows:

Base b Integers

This is also the algorithm for converting base b integers to decimal.

x = (dndn−1 · · · d0)b
= dn × bn + dn−1 × bn−1 + · · ·+ d0 × b0

where 0 ≤ di < b, i = 0, · · · , n, x ∈ Z+. The digits used are 0, · · · , n− 1

An example is the decimal system with base 10. For example,

350 = (350)10 = 3× 102 + 5× 101 + 0× 100

The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Today’s computers are digital and work with pulses set by electric components. Thus all
computers operate internally in the binary system (dk = 0 or 1). User-wise they operate in decimal
just for our convenience. Note that if several binary digits are grouped together, then a base b
system, where b = 2k where k ∈ Z+ is simulated. An example is as follows

(1 0101︸︷︷︸
5 in base 16

1110︸︷︷︸
E in base 16

)2 = (15E)16

To represent nonnegative and negative integers, we use the sign in front of the number digits,
then lay out the digits in sequence. On the computer, the sign can be represented as an extra
digit, 0 or 1.

2 Computer Arithmetic 3

Algorithm for converting decimal integers to base b

Initialize a list of remainders r. Divide decimal integer d by b to obtain quotient q and
remainder r. Repeat the following steps until quotient equals 0:

1. Set d = q.
2. Divide q by b to obtain new quotient q and r and store r.

The list of remainders from bottom to top to obatin the number in base b.

An example of converting (350)10 to (15E)16 is as follows:

Numerator Denominator Quotient Remainder
350 16 21 14 (= E)
21 16 1 5
1 16 0 1

2.2 (Human) Representation of Reals

Let x be a real number. Then x = ±(xI .xF)b = ±(dndn−1 · · · d0.d−1d−2 · · ·)b, where xI is the
integral part and xF is the fraction. (On the computer, the sign is represented by one digit,
which is 0 or 1.) The integral part of a real number is represented as a nonnegative integer. The
fraction, which may have infinite number of nonzero digits, is represented in a similar way by
laying out its digits after the decimal point.

Base b Reals

This is also the algorithm for converting base b fractions to decimal. For base b ∈ Z+,

xF = (.d−1d−2d−3 · · ·)b
= d−1 × b−1 + d−2 × b−2 + d−3 × b−3 + · · ·

=
∞∑
k=1

d−k × b−k

As an example, (0.101)10 can be converted to base 2 in the following way.

(0.101)2 = 1× 2−1 + 0× 2−2 + 1× 2−3 = 0.5 + 0.125 = 0.625

An important note is that if xF is a terminating binary fraction with n digits, the corre-
sponding decimal fraction is also terminating in n digits. The oppositie is not necessarily true.

Algorithm for converting decimal fractions to base b

Initialize a list of integrals i. Multiply decimal fraction m by base b to obtain product p, and
separate p into the integral part i and the fraction part f . Repeat the following steps until
fraction equals 0:

1. Set m = f .
2. Multiply m by b to obtain p, i and f

The list of integrals from top to bottom is the base b fraction.

An example of converting (0.1)10 to (0.00011 · · ·)2 = (0.00011)2 is as follows:

2 Computer Arithmetic 4

Multiplier Base Product Integral Fraction
0.1 2 0.2 0 .2
0.2 2 0.4 0 .4
0.4 2 0.8 0 .8
0.8 2 1.6 1 .6
0.6 2 1.2 1 .2
· · · · ·

Real numbers are usually represented in the computer as floating point numbers often in
binary system. There are several versions of floating-point numbers. We will give a simplified form
as well as the IEEE (Institute of Electrical and Electronics Engineers) Standard.

2.3 Computer Representation of Numbers

A simplified form for representing a floating-point number x in base b is the following

Floating-point Number with t base-b digits precision

Let f = ±(.d1d2 · · · dt)b be the mantissa (or significand). Let e = ±(cs−1cs−2 · · · c0)b be
the exponent (or characteristic). Then

x = (f)b × b(e)b

The floating-point number is normalized if d1 ̸= 0, or else d1 = d2 = · · · = dn = 0.
Significant digits of a nonzero floating-point number are the digits following and including the
first nonzero digits of the mantissa. All the digits of the mantissa of a normalized floating-point
number are significant. As an example,

(not normalized) 0.01204× 101 = 0.12040× 100 (normalized)

significant digits 1, 2, 0, 4, versus 1, 2, 0, 4, 0

The absolute value of the mantissa is always ≥ 0 and < 1. The exponent is also limited
Emin ≤ e ≤ Emax. For a set of floating-point numbers in a simplified form, −Emin = Emax =
(aa · · · a)b where a = b− 1.

According to the above simplified form, the overflow level (OFL) is the largest floating-
point number

Nmax = (.aa · · · a)b × b(aa···a)b

and the underflow level (UFL) is the smallest in absolute value nonzero floating-point number,
given by

Nmin = (.100 · · · 0)b × b−(aa···a)b if normalized, or

Nmin = (.00 · · · 01)b × b−(aa···a)b else

Hence, if a number becomes smaller than UFL during a computation, it may be approximated as
zero. UFL is a positive value that is very close to zero. If a number becomes larger than OFL
during a computation, it may be approximated as infinity. OFL is a positive value that is very
large.

Rb(t, s) denotes the set of all base b floating-point numbers that can be represented by
t b-digits mantissa including the sign, and s b-digits exponent including the sign. Note that

2 Computer Arithmetic 5

Rb(t, s) ⊂ [−OFL,−UFL] ∪ {0} ∪ [UFL,OFL]. Overflow occurs whenever a floating-point
number greater than Nmax or smaller than −Nmax has to be stored in the computer. Underflow
occurs when a nonzero floating-point number in the range (−Nmin, Nmin) has to be stored in the
computer.

Note that Rb(t, s) is finite while R is finite. Also R is dense while Rb(t, s) is not, and the
representable numbers are concentrated towards 0.

A real number x = ±(xI · xF)b = ±(dkdk−1 · · · d0.d−1 · · ·)b can be easily represented in a
floating point form. First normalize the mantissa

x = (dk · · · d0.d−1 · · ·)b = (.D1D2 · · ·)b × bk+1

Then there are three common ways to convert x ∈ R to a floating-point number fl(x) ∈ Rb(t, s).

(i) Chopping: Chop after digit t of the mantissa.

(ii) Rounding (traditional): Chop after digit t, then round Dt up or down, depending on
whether Dt+1 ≥ b/2 or Dt+1 < b/2.

(iii) Rounding (proper or perfect): Same as traditional, except when Dt+1 = b/2 and Dt+2 =
Dt+3 = · · · = 0, then round Dt up or down to the nearest even.

An example is shown below:

x chop trad.round proper round
.666... .66 .67 .67

−.305× 101 −.30× 101 −.31× 101 −.30× 101

−.315× 101 −.31× 101 −.32× 101 −.32× 101

−.3155× 101 −.31× 101 −.32× 101 −.32× 101

−.3055× 101 −.30× 101 −.31× 101 −.31× 101

According to the IEEE standard, the form for representing floating-point numbers is slightly
more sophisticated than the above simplified form, and is represented by the following,

IEEE Standard Floating-Point Numbers

Let q ∈ {0, 1}, di ∈ {0, 1} for i = 0, · · · , t− 1. Let p ∈ {0, 1} and e = (−1)p× (cs−2 · · · c1c0)b
with ci ∈ {0, 1} for i = 0, · · · , s− 2.

(−1)q × (d0.d1d2 · · · dt−1)b × 2e

Also Emin ≤ e ≤ Emax with Emin = −Emax + 1.

There are numbers of single precision (binary32), double precision (binary64) and
quadruple precision (binary128) and their characteristics are given by Table (1).

The mantissa is normalized: d0 = 1 (or else the number is 0). Thus, d0 need not be stored,
and a t-bit mantissa needs t− 1 storage bits. Note that the IEEE Standard uses proper rounding,
and also includes some “special numbers”, for example +∞, −∞, NaN (Not-a-Number) to handle
indeterminate values that may arise in some computations.

2 Computer Arithmetic 6

Type of number No. of bits t Emin Emax εmach

single precision, binary32 32 24(= 23 + 1) −126 +127 1.2× 10−7

double precision, binary64 64 53(= 52 + 1) −1022 +1023 2.2× 10−16

quadruple precision, binary128 128 113(= 112 + 1) −16382 +16383 1.9× 1.9−34

Table 1: Characteristics of numbers of different precisions

Type of number t Emin Emax

single precision, binary32 7 −38 +38
double precision, binary64 16 −308 +308

quadruple precision, binary128 34 −4928 +4928

Table 2: Characteristics of numbers of different precisions

2.4 Data and Computational Error

fl(x)− x is the round-off error (representation error). It is roughly proportional to x,
so we can write fl(x) − x = xδ, or fl(x) = x(1 + δ), where δ is the relative round-off error.
δ may depend on x but the bound, called the unit round-off, is independent of x and is often
denoted by µ or u.

|δ| ≤ b1−t if normalized numbers and chopping are assumed.

|δ| ≤ 1
2
b1−t if normalized numbers and rounding are assumed.

|δ| = |x−x̂
x
| with x and its approximation x̂ is said to be correct in r significant b-digits, if

|δ| ≤ 1
2
b1−r (= 5b−r if b = 10).

The (absolute) error in the approximation is x − x̂, and the relative error is x−x̂
x
. Often

we are interested only in the magnitude of the absolute and relative errors, in which case we take
the absolute value.

Let x, y ∈ Rb(t, s), i.e. assume x, y are exactly representable on the computer system, and
◦ ∈ {+,−,×, /}. Then for the computer’s floating point operation ◦ corresponding to ◦. Then in
general,

x ◦ y ̸= fl(x ◦ y)

Computer Arithmetic

The operation ◦ may vary from machine to machine, but in general,

x ◦ y = fl(x ◦ y)

which is achieved by the use of one or two extra temporary digits (bits). Thus
The error of a computation is the round-off error of the correct result.

In other words, computer operations return the correctly rounded result (i.e. the number
closest to the correct answer in the representation being used.) As an example,

x y x+ y x + y = fl(x+ y)
.2× 101 .51× 10−4 .2000051× 101 .20× 101

.2× 101 .51× 10−1 .2051× 101 .21× 101

2 Computer Arithmetic 7

Note that Rb(t, s) is not closed with respect to any mathematical operations. Also, the phenomenon
in which a nonzero number is added to another and the latter is left unchanged is often referred
to as saturation.

Computation of Functions

The computer application f(x) of a built-in function f to a number x ∈ Rb(t, s) is constructed
so that

f(x) = fl(f(x))

That is,
The error of computing a function value is the round-off error of the
correct result.

As an example, sin(1) = 0.84147098..., sin(1) = fl(sin(1)) = fl(0.84147098...) = 0.84.

The machine epsilon (mach-eps) εmach is the smallest (non-normalized) floating-point
number of the form b−i for some i ∈ Z+ and the property fl(1 + εmach) > 1.

εmach = b1−t if chopping is assumed.

εmach = 1
2
b1−t if traditional rounding is assumed.

1
2
b1−t < εmach ≤ b1−t (εmach = 1

2
b1−t + b−t) if proper rounding is assumed.

Thus, −εmach ≤ δ ≤ εmach. For IEEE Standard numbers, εmach = 21−t, which is that for single
precision, εmach = 2−23 ≈ 1.19209× 10−7, for double precision, εmach = 2−52 ≈ 2.22045× 10−16, for
quadruple precision, εmach = 2−112 ≈ 1.9259× 10−34. It is important to note that εmach is different
from UFL. We have the relation that 0 < UFL < εmach < OFL.

As soon as an error, whether it is from round-off error or a floating-point operation, it may
be amplified or reduced in subsequent operations. Let x, y ∈ R. Then fl(x) = x(1 + δ1), f l(y) =
y(1 + δ2). For multiplication, the computer computes

fl(x)×fl(y) = fl(fl(x)× fl(y))

= (x(1 + δ1)y(1 + δ2))(1 + δ3)

= xy(1 + δ1 + δ2 + δ1δ2)(1 + δ3)

= xy(1 + δ1 + δ2 + δ1δ2 + δ3 + δ1δ3 + δ2δ3 + δ1δ2δ3)

≈ xy(1 + δ1 + δ2 + δ3)

= xy(1 + δ×)

where |δ×| ≤ 3εmach

2 Computer Arithmetic 8

For addition, the computer computes

fl(x)+fl(y) = fl(fl(x) + fl(y))

= (x(1 + δ1) + y(1 + δ2))(1 + δ3)

= x(1 + δ1)(1 + δ3) + y(1 + δ2)(1 + δ3)

≈ x(1 + δ1 + δ3) + y(1 + δ2 + δ3)

= (x+ y)(1 +
x

x+ y
(δ1 + δ3) +

y

x+ y
(δ2 + δ3))

= (x+ y)(1 + δ+)

where

|δ+| ≤
∣∣∣∣ x

x+ y

∣∣∣∣ · 2εmach +

∣∣∣∣ y

x+ y

∣∣∣∣ · 2εmach =
|x|+ |y|
|x+ y|

· 2εmach

= 2εmach when xy > 0

= 2εmach
|x− y|
|x+ y|

when xy < 0

Consider however, the case of x ≈ −y, then the relative error blows up, known as the
phenomenon of catastrophic cancellation. Adding nearly opposite (or subtracting nearly equal)
numbers may result in having no correct digits at all.

As an example, consider the real numbers x = 0.123456790×100 and y = 0.123456789×100.
The floating point approximation for x and y are in 8 decimal points with chopping. Then the
difference x− y is computed as

fl(fl(x)− fl(y)) = 0.00000001× 100 = 0.10000000× 10−7

while
x− y = 0.000000001× 100 = 0.10000000× 10−8

Although the relative error in the floating-point representation of y is at the level of 10−8, the
relative error in fl(fl(x)− fl(y)) is too high (at the level of 100).

0.1× 108 − 0.1× 10−7

0.1× 10−8
=
−0.9× 10−8

0.1× 10−8
= −9× 100

Now consider some computation with input x ∈ R and output f(x) ∈ R. Let fl(x) =
x(1 + δx), and assume f(x) is twice differentiable in a neighbourhood of x. Then, if f(x) ̸= 0,
using Taylor’s series and ignoring terms of second or higher order (O(δ2x)), we have

f(fl(x)) ≈ f(x) + f ′(x)(fl(x)− f(x))

= f(x) + xf ′(x)

(
fl(x)− f(x)

x

)
= f(x) + xf ′(x)δx

= f(x)

(
1 +

xf ′(x)

f(x)
δx

)

2 Computer Arithmetic 9

so we have

f(fl(x)) ≈ f(x)(1 + δf(x)) with δf(x) =
xf ′(x)

f(x)
δx

If |δx| ≤ εmach, we have

|δf(x)| ≤
∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ εmach

The factor κf =
∣∣∣xf ′(x)

f(x)

∣∣∣ is the (relative) condition number of f(x) and is a measure of the

relative sensitivity of the computation of f(x) on relatively small changes in the input x, or in
other words, a measure of how the relative error in x propagates in f(x). A computation is
well-conditiond if relatively small changes in the input, propduce relatively small changes in the
output, otherwise it is ill-conditioned. Note that once f(fl(x)) is computed, it is stored and
represented as fl(f(fl(x))) = fl(f(x)(1 + δf(x))) = f(x)(1 + δf(x))(1 + δ) ≈ f(x)(1 + δf(x) + δ),
where |δ| ≤ εmach.

Example 2.4.1 Let f(x) =
√
x. Then, the condition number of f(x) is

∣∣∣xf ′(x)
f(x)

∣∣∣ = 1
2
, which

is small and independent of x. Thus the computation of the square root of a number is a well-
conditioned computation.

Example 2.4.2 Let f(x) = ex. Then the condition number of f(x) is
∣∣∣xf ′(x)

f(x)

∣∣∣ = |x|. The

condition number depends linearly on x. For large |x|, we will have overflow (e700 = 10304), thus
we can say that the computation of the exponential well-conditioned for all acceptable values of x.

Note that if a function has κf > ε−1
mach, we risk having no correct digits at all in the computed

result f(x). The condition number of a function is a property inherent to the function itself, and
not to the way the function is computed.

Stability is similar to conditioning, but it refers to a numerical algorithm, i.e. the particular
way a certain computation is carried out. A numerical algorithm is stable if small changes in the
algorithm input parameters have a small effect on the algorithm output, otherwise it is called
unstable. Mathematically equivalent expressions are not necessarily computationally equivalent.
Consider the following example.

Example 2.4.3 Consider the equation (a− b)2 = a2− 2ab+ b2. Let a = 15.6, b = 15.7. The
floating point representation is in 3 decimal digits with rounding.

(a− b)2 = (−0.1)2 = 0.01 = 0.1× 10−1

a2 − 2ab+ b2 = 243.36− 2× 244.92 + 246.49 = 243− 490 + 246 = 489− 490 = −0.1× 101

In this case, computing the right hand side does not even get the sign correct. Then in this case,
computing the left hand side is a more stable algorithm.

There is no general rule to pick the most stable algorithm for a certain computation. However,
we should

- avoid adding nearly opposite (or subtracting nearly equal) numbers

- minimize the number of operations

- add numbers starting from the smallest and proceed to the largest in adding operations

2 Computer Arithmetic 10

- be alert when adding numbers of very different scales.

Let x be a number and let y = f(x) be the desired result of some computation with input x.
Assume the inverse function f−1 exists. Assume that instead of y, we computed ŷ due to various
errors such as the round-off error in x and propagation of error. The forward error is y − ŷ,
and may include initial data error in x as well as propagation of error in computations. On the
other hand, one can view ŷ as being defined as ŷ = f(x̂), then x̂ = f−1(ŷ)x, then x − x̂ is the
backward error. Essentially, x̂ denotes an input value for which the exact function f would give
the computed output ŷ. Alternatively, one can view ŷ as being the result of inexact computations
f̂ on exact input x: ŷ = f̂(x). Then f̂(x) = f(x̂), and x̂ = f−1(f̂(x)).

Thus, the approximate solution ŷ to the original problem is the exact solution to a modified
problem (x̂) or to the original problem with modified input (f(x̂)). For both forward and backward
errors, the respective relative versions are

relative forward error =
y − ŷ

y
relative backward error =

x− x̂

x

The following relation hold:

|relative forward error| ≈ condition number × |relative backward error|

It is often easier to estimate the backward error rather than the forward one.

As an example, let x = 2 and f(x) =
√
x. Let ŷ = 1.4. Notice that

√
1.96 = 1.4, thus

x̂ = 1.96. Then
Forward error = 1.4142...− 1.4 = 0.0142
Relative forward error = (1.4142...− 1.4)/1.4142... = 0.0142.../1.4142... ≈ 0.01
Backward error = 2− 1.96 = 0.04
Relative backward error = 2− 1.96 = 0.04
Condition number = 1/2

We have seen that computer representation of numbers may involve round-off error, which
may be propagated through simple arithmetic operations. Also, certain mathematical expressions
are approximated by other expressions that are possibly more convenient for calculation. The
truncation or discretization error is the error in approximation of mathematical expressions
with exact arithmetic. In addition, the evaluation of the approximate expressions is not performed
in finite arithmetic instead of exact arithmetic. This gives rise to an additional error of rounding
error. The computational error is the sum of truncation and rounding errors.

Total Error

The total error is given by

Total error = propagated data error + [(truncation error + rounding error)]

Often, one of these errors is dominant, but there is no general rule that tells us which.

Let x be the input data and x̂ be its computer representation, and f(x) be the target
computation. Let g(x) be the approximation of f(x) and the computer evaluates ĝ(x). Then the

2 Computer Arithmetic 11

total error is

f(x)− ĝ(x) = (f(x)− f(x̂)) + [(f(x̂)− g(x̂)) + (g(x̂)− ĝ(x̂))]

= (propagated data error) + [computational error]

= (propagated data error) + [(truncation error) + (rounding error)]

The propagated data error is dependent on the function itself (the condition number of f and the
error in the data) but not the computational method. The computational error is dependent on
the computational method.

Example 2.4.4 Assume we want to compute sin(π/8). Note that sin(π/8) = 0.38268343....
Let x = π, x̂ = 3, f(x) = sin(x), g(x) = x−x3/3!, and the computation be done in 3-decimal digit
digit floating-point arithmetic, denoted by ĝ(x̂). Then the result will be

ĝ(x̂) = fl

(
fl

(
3

8

)
− fl

[
fl

(
1

6

)
fl

(
fl

(
3

8

)3
)])

≈ 0.366

The initial data error is x− x̂ = π − 3 ≈ 0.1415926536

The propagated data error is f(x)− f(x̂) = sin(π/8)− sin(3/8) ≈ 0.0164109

The truncation error is f(x̂)− g(x̂) = sin(3/8)− 3/8 + (3/8)3/6 ≈ 0.0000615915865

The rounding error is approximately g(x̂)− ĝ(x̂) = 3/8− (3/8)3/6− ĝ(x̂) = 0.3662109375−
0.366 = 0.0002109375

Total error is f(x)− ĝ(x̂) = 0.38268343...− 0.366 = 0.01668343...

Recall Taylor’s Theorem. Let k ≥ 1 be an integer, and a ∈ R. Assume f : R → R be
k+1 times differentiable on the open interval and continuous on the closed interval between a and
x ∈ R. Then there exists ξ between x and a, such that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (k)(a)

k!
(x− a)k +

f (k+1)(ξ)

(k + 1)!
(x− a)(k+1)

with the Taylor polynomial tk(x) of degree k

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (k)(a)

k!
(x− a)k

2 Computer Arithmetic 12

and the remainder Rk+1(x)

Rk+1(x) =
f (k+1)(k + 1)!

(x− a)(k+1)

When x is close to a so that |x− a| is small, the remainder is small, and the Taylor’s polynomial
is a good approximation to f(x), thus

f(x) = tk(x) +Rk+1(x) ≈ tk(x)

If f is infinitely differentiable. The infinite Taylor series of f(x) is given by

f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k

f(x) is analytic if the infinite series converges to f(x) for x close enough to a.

ex 1 + x+ x2

2!
+ · · ·

∑∞
k=0

xk

k!
any x

sin(x) x− x3

3!
+ x5

5!
− · · ·

∑∞
k=0(−1)k

x2k+1

(2k+1)!
any x

cos(x) 1− x2

2!
+ x4

4!
− · · ·

∑∞
k=0(−1)k

x2k

(2k)!
any x

log(x) (x− 1)− (x−1)2

2
+ (x−1)3

3
− · · ·

∑∞
k=1(−1)k+1 (x−1)k

k
0 < x ≤ 2

log(1 + x) x− x2

2
+ x3

3
− · · ·

∑∞
k=1(−1)k+1 xk

k
−1 ≤ x ≤ 1

Note that the Taylor expansion of log(x) is around 1 (a = 1), while the others are around 0.

Recall the approximation of a function f(x) by its Taylor polynomial tk(x)

f(x) = tk(x) +Rk+1(x) ≈ tk(x)

In this approximation, the truncation error is the remainder Rk+1(x). When approximating a
function f(x) by its Taylor polynomial tk(x). To decide how many terms in the Taylor expansion
we should use to keep the truncation error below a certain tolerance, we study mathematically
for which k the remainder term in absolute value becomes bounded by the tolerance for all x
and ξ of interest. To decide how many terms in the Taylor expansion we should use to keep the
computational error below a certain tolerance, we keep adding more terms until the difference in
the resulting approximation to the function is small enough (or until it makes no difference).

Lastly in this section, we will introduce the O(hα) and O(nβ) notation.

O(nβ)

The O(nβ) is used to denote asymptotic complexity of algorithm in terms of problem size n.
In this notation, n is assumed to be large and becoming larger and larger, tending to infinity.

O(nβ) = c0 + c1n+ c2n
2 + · · ·+ cβn

β

where ci are constants independent of n.

3 Solving Linear Systems 13

O(hα)

The O(hα) is used to denote asymptotic behaviour of error of some discretization (compu-
tational) methods, in terms of the distance between neighbour discretization points, i.e. the
“refinement” of the discretization. In this notation, h is assumed to be small and becoming
smaller and smaller, tendning to 0.

O(hα) = cαh
α + cα+1h

α+1 + · · ·

where ci are constants independent of h.

Note that h = (b− a)/n, that is, h is proportional to 1/n.

O(hα) = O(n−α) = cα
1

nα
+ cα+1

1

nα+1
+ · · · = · · ·+ cα+1

1

nα+1
+ cα

1

nα

3 Solving Linear Systems

Solving linear systems lies in the heart of any scientific problem. Let A be a n × n matrix,
and b ∈ Rn. Solving Ax = b means computing x ∈ Rn that satisfies Ax = b. We are interested
in methods for computing x given A and b, and more particular in methods that compute x with
high accuracy (small error) and high efficiency (low number of operations).

3.1 Gaussian Elimination

The most fundamental method for solving linear systems is Gaussian elimination (GE),
which is based on the general technique of transforming a given linear system to another that
is mathematically equivalent to the first (in the sense that the solution is the same), but easier
to solve. Before this, we will look at the Forward substitution algorithm for n × n lower-
traingular matrices.

3.1.1 Forward substitution algorithm for n× n lower-triangular matrices

Let A be an n×n lower triangular matrix with all diagonal elements nonzero. Let b be n×1
and we will solve Ax = b. Then the equations are

a11x1 = b1

ai1x1 + ai2x2 = b2

ai1x1 + ai2x2 + · · ·+ aiixi = bi

an1x1 + an2x2 + · · ·+ anixi + · · ·+ annxn = bn

Then starting with the first equation, we compute the first unknown, substitute in the second
equation, compute the second unknown, substitute in the third equation, etc., proceeding forward

3 Solving Linear Systems 14

to the last equation. Thus we have

x1 = b1/a11

x2 = (b2 − a21x1)/a22

xi = (bi −
i−1∑
j=1

aijxj)/aii

xn = (bn −
n−1∑
j=1

anjxj)/ann

Then we have Algorithm (3.1.1).

Algorithm 1 Forward Substitution Algorithm for n× n lower-triangular matrices

Initialize x as an array of size n
for i = 1 to n do

xi = bi
for j = 1 to i− 1 do

xi = xi − aijxj

if aii ̸= 0 then
xi = xi/aii

else
quit

The number of operations needed are 1 + 2 + · · · + (n − 1) = n(n − 1)/2 ≈ n2/2 pairs of
additions and multiplications (flops) and n divisions. Since number of divisions are much smaller
than that of flops, we often ignore them in the operation counts.

3.1.2 Backward substitution algorithm for n× n upper-triangular matrices

Now let us consider an n×n upper triangular matrix A, with all diagonal elements nonzero.
Let b be n× 1 and we will solve Ax = b. Then the equations are

a11x1 + a12x2 + · · ·+ a1ixi + · · ·+ a1nxn = b1

a22x2 + · · ·+ a2ixi + · · ·+ a2nxn = b2

aiixi + · · ·+ ainxn = bi

annxn = bn

Similar to the case of lower-triangular matrices, in this problem we start with the nth equation,
then compute the last unknown, substitute in the equation before the last (n− 1st), then proceed
backwards to the first equation. The algorithm is the same as before, with the only difference
being the order of traversing. Same as before, there are n2/2 pairs of additions and multiplications
(flops) and n divisions.

3 Solving Linear Systems 15

Algorithm 2 Backward Substitution Algorithm for n× n upper-triangular matrices

Initialize x as an array of size n
for i = n down to 1 do

xi = bi
for j = i+ 1 to n do

xi = xi − aijxj

if aii ̸= 0 then
xi = xi/aii

else
quit

3.1.3 Gauss Elimination

Two linear systems are called equivalent when they admit exactly the same solutions or
sets of solutions. That is Ax = b ⇔ By = c when x = y. Given a linear system, there are
infinitely many equivalent to it. One way to obtain systems equivalent to a given one is to apply
the so-called row operations to the initial given system. There are three main row operations:

(i) Scalar multiplication of a row ρi with a nonzero scalar ρi ← κρi, κ ̸= 0

(ii) Addition of rows ρi ← κρi + λρj, κ ̸= 0, λ ̸= 0

(iii) Permutation of rows ρi ←→ ρj

Concatenating the column matrix of b to A, they form an augmented matrix [A : b].

Example 3.1.3.1 As an example, let us consider the augmented matrix

[A : b] =

1 −2 1 1 : 5
2 −1 5 −4 : −5
−1 3 −1 1 : 1
−3 7 −5 1 : −10

 (1)

To eliminate x1 from rows 2 to 4, consider the row operations ρ
(1)
2 ← ρ2 − 2ρ1, ρ

(1)
3 ← ρ3 − (−ρ1),

ρ
(1)
4 ← ρ4− (−3ρ1). These factors were chosen from that 2 = 2/1 = a21/a11, −1 = −1/1 = a31/a11,
−3 = −3/1 = a41/a11, so that the coefficients in positions a21, a31, a41 are annihilated. Element
a11 which we divide with is called the pivot for step 1. Then we end up with

[A(1) : b(1)] =

1 −2 1 1 : 5
0 3 3 −6 : −15
0 1 0 2 : 6
0 1 −2 4 : 5

 (2)

If we continue in a similar way for the rest of the rows, then we will end up with an upper
traingular matrix. In high-level pseudocode, we have For the evolution of this algorithm, refer to
Appendix A. Algorithm (3.1.3) overwrites the strictly lower triangular part of A by the strictly
lower triangular part of L (the multipliers) and the upper triangular part of A with new numbers
that can be considered to form an upper triangular matrix U .

In total there are about
∑n−1

k=1(n−k)2 ≈
∑n−1

k=1 k
2 = n(n−1)(n−2)/6 ≈ n3/3 flops, and n2/2

divisions. If we consider also the right-hand side vector, then our algorithm becomes Algorithm
(3.1.3).

3 Solving Linear Systems 16

Algorithm 3 Gauss Elimination (High Level)

for j = 1 to n− 1 do ▷ For each row
for i = j + 1 to n do ▷ For each column

Eliminate xj from row i

Algorithm 4 Gauss Elimination (without pivoting) algorithm for general n× n matrices

Given matrix A
for k = 1 to n− 1 do ▷ For each A(k)

for i = k + 1 to n do ▷ For each row i below the pivot
if akk ̸= 0 then ▷ Computer the multiplier if pivot is not 0 and store it in the correspond-
ing element

aik = aik/akk
else

quit
for j = k + 1 to n do

aij = aij − aikakj

Algorithm 5 Gauss Elimination (without pivoting) algorithm for general n × n matrices with
simultaneous processing of the right-hand size vector
Given matrix A
for k = 1 to n− 1 do ▷ For each A(k)

for i = k + 1 to n do ▷ For each row i below the pivot
if akk ̸= 0 then ▷ Compute the multiplier if pivot is not 0 and store it in the correspond-
ing element

aik = aik/akk
else

quit
for j = k + 1 to n do

aij = aij − aikakj
bi = bi − aikbk

The additional work for processing the right hand side vector requires an extra
∑n−1

k=1 ≈∑n−1
k=1 k = n(n− 1)/2 ≈ n2/2 flops.

Hence the cost of solving a general linear system by Gauss elimination is the following

Gauss elimination: n3/3 flops and n2/2 divisions

Simultaneous processing of the right-hand size vector: n2/2 flops

Back substitution: n2/2 flops and n divisions

Total: n3/3 + 2× n2/2 flops and n2/2 + n divisions

3.2 LU Decomposition

During the Gauss elimination process, a new matrix, the upper triangular matrix U is stored
in the upper triangular part of A. The multipliers lik, i = k+1, · · · , n, k = 1, ·n− 1 are generated,

3 Solving Linear Systems 17

and those can be stored in a strictly lower triangular matrix L or in the stricly lower triangular
part of A.

If we extend L by setting 1’s on the main diagonal, that is to produce a unit lower triangular
matrix L, making L just lower triangular but not strictly, then we can show that

A = L · U (3)

Suppose we have the matrices

M (1) =

1 0 0 0
−l21 1 0 0
−l31 0 1 0
−l41 0 0 1

 M (2) =

1 0 0 0
0 1 0 0
0 −l32 1 0
0 −l42 0 1

 M (3) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −l43 1

We will notice that M (k)A(k−1) = A(k). We have the following steps.

Ax = b

M (1)Ax = M (1)b or A(1)x = b(1)

M (2)M (1)Ax = M (2)M (1)b or A(2)x = b(2)

M (3)M (2)M (1)Ax = M (3)M (2)M (1)b or A(3)x = b(3) or Ux = c

Given the above, we have M (3)M (2)M (1)A = U . Taking into account that M (k), k = 1, 2, 3, ... are
unit lower triangulars and therefore non-singular, we have A = (M (1))−1(M (2))−1(M (3))−1U and
A = (M (3)M (2)M (1))−1U .

Also knowing that

The inverse of a unit lower triangular matrix is a unit lower triangular matrix, and

The product of unit lower triangular matrices is a unit lower triangular matrix,

we have that (M (1))−1(M (2))−1(M (3))−1, equivalentlt M−1 is unit lower triangular. Let L =
(M (1))−1(M (2))−1(M (3))−1, then A = LU . Hence L is the product of the inverses of the M (k)

matrices. The matrices M (k) are called elementary Gauss transformations. The properties of tri-
angular matrices are included in Appendix B. Then, it can be observed that an elementary Gauss
transformation is a matrix with the following properties:

(i) It is unit lower triangular

(ii) Its only non-zero elements are the 1’s on the diagonal, and possibly the elements of one
column below the diagonal.

(iii) The inverse of an elementary Gauss transformation is a matrix like itself, with the signs of
the non-zero off-diagonal elements reversed.

These can be generalized to n × n matrices. Let L = (M (1))−1 · · · (M (n−1))−1, then A = LU . For
computational purposes, the matrices M (k) and their inverses are never stored individually.

Let Ax = b and assume we apply Gauss elimination algorithm to A. Then we obtain the L
and U factors of A such that A = LU . Then the solution of Ax = b is reduced to the solutions of
Lc = b where Ux = c. Therefore, one forward and one backward substition are needed. The cost
is listed as follows

3 Solving Linear Systems 18

LU factorization / GE: n3/3 flops and n2/2 divisions

Forward substitution for finding c: n2/2 flops (The n divisions are not needed, since L has
1’s on the main diagonal)

Backward substition for finding x: n2/2 flops and n divisions

Total: n3/3 + 2× n2/2 flops and n2/2 + n divisions

Here are some properties of LU factorization. The L, U factors of the LU decomposition of
a given matrix A are unique. That is, if A = LU and A = L̃Ũ where L, L̃ are unit lower triangular
and U, Ũ are upper triangular, then L = L̃ and U = Ũ ,

The LU decomposition can also be written in the form A = LDÛ where D is a diagonal
matrix and Û is a unit upper triangular matrix. More specifically, if A = LU , where L is unit
lower triangular and U is upper triangular, then A = LDÛ , where dii = uii, i = 1, · · · , n (i.e.
D = diag(u11, u22, · · · , unn)) and ûij = uij/uii, i = 1, · · · , n, j = 1, · · · , n.

The cost of LU factorization can be reduced for specific types of matrices such as symmetric
matrices, symmetric positive definite matrices, and banded matrices.

3.2.1 Symmetric Matrices

Assume that A is symmetric. Each step if GE preserves symmetry of the submatrix A(k +
1 · · ·n, k + 1 · · ·n), that is, step k of GE produces a symmetric (n− k)× (n− k) submatrix. This
happens because the operation

a
(k)
ij = a

(k−1)
ij − a

(k−1)
ik /a

(k−1)
kk · a(k−1)

kj

and the operation
a
(k)
ji = a

(k−1)
ji − a

(k−1)
jk /a

(k−1)
kk · a(k−1)

ki

end up to be the same, since A is symmetric. Thus, we can obtain the LU factorization of A
by doing only half of the operations (either those corresponding to the upper triangular part, or
those corresponding to the lower triangular part). This reduces the work of LU factorization of
symmetruc matrices to n3/6 flops. The LU factorization of a symmetric matrix then takes the
form A = LDL⊺, i.e. Û = L⊺, U = DL⊺, where D is a diagonal matrix.

3.2.2 Symmetric Positive Definite Matrices

Assume A is symmetric positive definite, i.e. A = A⊺ and x⊺Ax > 0 for every non-zero vector
x.

It can be shown that the elemenst of D of the factorization A = LDL⊺ are positive, i.e.
dii > 1, i = 1, · · · , n. The LU factorization of a symmetric positive definite matrix takes the form
A = CC⊺ where C = LD1/2 and D1/2 is a matrix such that D1/2 ·D1/2 = D. (In this case, since
D is diagonal, D1/2 is also diagonal and we have (D1/2)ii = (dii)

1/2)

The factorization A = CC⊺ is called the Choleski factorization of A, and C is the
Choleski factor of A. The Choleski algorithm is an algorithm based on GE, which computes the
entries of the Choleski factor C of a symmetric positive definite matrix A. C is lower triangular,
not unit lower triangular.

3 Solving Linear Systems 19

3.2.3 Banded Matrices

Recall that a square matrix A is banded with lower bandwith l and upper bandwidth u, i.e.
(l, u)-banded, if aij = 0 when i− j > l and j− i > u. In other words, in a (l, u)-banded matrix, all
entries below the l-th subdiagonal and above the u-th super diagonal are 0. The total bandwidth
is l + u+ 1.

Each step of GE preserves bandedness of the matrix. That is, if A is (l, u)-banded, the L
and U matrices arising from GE are (l, 0) and (0, u)-banded respectively. Note that L is both unit
lower triangular and (l, 0)-banded, and U is both upper triangular and (0, u)-banded.

Thus, we can obtain the LU factorization of A by doing only operations within the band of
non-zero entries. This reduces the work of LU factorization of (l, u)-banded matrices to l · u · n
flops approximately.

Each step of GE processes a rectanglular array (submatrix) of size (l+1)×(u+1). In each of
the last l−1 or u−1 (precisely max {l−1u−1}) steps the size of the submatrix decreases by 1, so that
it does not go out of bounds. The algorithm requires

∑n−1
k=1(l+1)(u+1) ≈

∑n
k=1 lu = (n−1)lu ≈ nlu

flops.

Algorithm 6 LU Factorization by Gauss Elimination for (l, u)-banded Matrices

Given matrix A
for k = 1 to n− 1 do ▷ For each A(k)

for i = k + 1 to min{k + l, n} do
aik = aik/akk
for j = k + 1 to min{k + u, n} do

aij = aij − aikakj

Algorithm 7 Forward Substitution (Ly = b where L is (l, 0)-banded) for Banded Matrices

for i = 1 to n do
for j = max{i− l, 1} to i− 1 do

bi = bi − lijbj
bi = bi/lii

Algorithm 8 Backward Substitution (Ux = y where U is (o, u)-banded) for Banded Matrices

for i = n down to 1 do
for j = i+ 1 to min{i+ u, n} do

yi = yi − uijyj
yi = yi/uii

The forward substitution algorithm requires
∑n

i=1(l+1) = n(l+1) ≈ nl flops. The backward
substitution algorithm requries

∑n
i=1(u+ 1) = n(u+ 1) ≈ nu flops. Thus the solution of an (l, u)-

banded linear system by GE/LU and f/b/s requires nlu+ n(l + u) flops.

3.3 LU Factorization for Computing the Inverse of a Matrix

Recall that given a square matrix A ∈ Rn×n, if there exists a matirx X ∈ Rn×n for which
A ·X = X · A = I, then X is the inverse of A and is denoted by A−1.

3 Solving Linear Systems 20

Note that X is computed from the relation A ·X = I. Let Xj denote the j-th column of X,
and ej = [0, 0, ..., 0, 1, 0, ..., 0]⊺ be the unit vector with “1” in the jth row. Note that Xj ∈ Rn×1

and ej ∈ Rn×1. The relation A ·X = I then consists of the relations

A ·Xj = ej j = 1, ..., n (4)

For each j, relation A · Xj = ej forms a linear system with matrix A, which is same for each j,
and right-hand size ej, which is different for each j.

Assume we have computed the LU factorization of A, and let L, U be the associated factors.
Then the solution of the systems in Equation (4) reduces to the solution of the triangular systems

L · Yj = ej, j = 1, ..., n (5)

U ·Xj = Yj, j = 1, ..., n (6)

Algorithm 9 Algorithm for Computing the Inverse of a Matrix

Compute the L, U factors of the LU factorization of A by GE
for j = 1, ..., n do

Solve L · Yj = ej using f/s
Solve U ·Xj = Yj using b/s

A−1 = [X1|X2| · · · |Xn]

According to the cost for solving m linear systems each of size n× n, with the same matrix,
in this case, with m = n, the coset is n3/3 + n(n2/2 + n2/2) = n3/3 + n3 = 4n3/3 flops and
n2/2 + n · n = 3n2/2 divisions.

However, it can b shown that this cost can be reduced to n3 flops and 3n2/2 divisions, if we
take advantage of the particular form of the right-hand side vectors ej. Thus, the cost of computing
the inverse of a matrix is n3 flops.

An important note is that the solution of Ax = b can be obtained by x = A−1b. However,
the cost of this procedure is n3 flops, which is 3 times as much as the cost of applying LU/GE and
back and forward substitutions for one right-hand side vector. Therefore, inverses of matrices are
not computed, unless they are explicitly needed.

The LU factorization of a symmetric matrix involves some symmetry of the factors: A =
LDL⊺. The inverse of a symmetric matrix is a symmetric matrix. The LU factorization of a
banded matrix involves some bandedness of the factors: If A is (l, u)-banded and no pivoting is
used, then L is (l, 0)-banded and U is (0, u)-banded. The inverse of a banded matrix is in genral
not a banded matrix.

3.4 Summary

We have seen two ways of solving a linear system Ax = b, both based on Gauss Elimination.

The first applies GE to A and b simultaneously, and obtains an upper triangular matrix U
and a transformed vector c = b(n−1), such that Ax = b is equivalent to Ux = c, then applies back
substitution to Ux = c to compute x. In this case, the multipliers are computed but do not need
to be stored.

3 Solving Linear Systems 21

The second applies GE to A only and obtains L and U factors, thus A = LU , then applies
forward substitution to Lc = b to compute an intermediate vector c, and then applies backward
substitution to Ux = c to compute x. In this casem the multipliers are computed and stored in
the strictly lower triangular part of A.

The two ways are mathematically equivalent and involve the same computational cost. How-
ever, when we need to solve several linear systems with the same matrix and different right-hand
side vectors, we should adopt the second way, apply GE / LU once, then store the L and U
factors, then apply a pair of forward substitution and backward substitution for each right-hand
side vector. Then the cost of solving m linear systems of size n × n with the same matrix is
n3/3 +m(n2/2 + n2/2) = n3/3 +mn2 flops and n2/2 +mn divisions.

3.5 Gauss Elimination with Pivoting

Recall that a point in the Gauss Elimination algorithm, we have that if akk ̸= 0, aik = aik/akk,
else quit. Clearly, if akk = 0, this algorithm cannot be applied in the form it was given. When
the denominator in the multiplier is small and we also have limited number of decimal digits
floating-point arithmetic.

Pivoting in GE is a technique according to which rows (or columns or both rows and columns)
are interchanged, so that zero or very small in absolute value denominators in multipliers are
avoided. Thus the applicability or stability of GE is enhanced. Through GE witn pivoting, we
either able to solve systems not zolvable due to zero denominators, or able to solve systems with
better accuracy than without pivoting.

Row pivoting : Reorder rows of the matrix (PrA = LU . Pr permutation matrix)

Column pivoting : Reorder columns of the matrix (APc = LU , Pc permutation matrix)

Partial pivoting : Row or column pivoting (one of the two)

Complete pivoting : Reorder both rows and columns of the matrix (PrAPc = LU)

Symmetric pivoting : Reorder both rows and columns of the matrix, but when rows k and s
are interchanged, then columns k and s are also interchanged (PAP ⊺ = LU)

The most common form of pivoting is row pivoting, so we often omit the term “row” or “partial”.

The strategy followed in (row) pivoting is summarized as follows:

At the kth GE, before the multiplier at column k, rows k + 1, · · · , n, are computed, a
search along the kth column from row k to row n is performed, to identify the largest in absolute
value element. This element becomes the pivot. Assume the pivot belongs to row s, i.e. |ask| =
max{|ask|, i = k, · · · , n}. If s ̸= k, rows k and s are interchanged.

In most standard implementations, this interchange is done by indirect indexing. That is, an
integer vector, say ipiv, of size n or n− 1 is used to refer to the indices of the rows. For example,
we can define ipiv (size n − 1) by using the following idea: ipiv(k) = s means that rows k and s
were interchanged during the kth elimination step. If ipiv(k) = k, then no interchange took place
at the kth elimination step. (We could also keep reflecting the interchanges.) The result of one
or more interchanges of rows of A is a reordering of the rows of A. After possible interchange of
rows, the multipliers are computed as usual, and the elimination step proceeds.

3 Solving Linear Systems 22

Algorithm 10 Gauss Elimination with Partial Pivoting Algorithm for General n× n matrices

for k = 1 to n− 1 do
Find row s with maxni=k{aik} (s = argmaxni=k{|aik|})
if ask = 0 then

Matrix is singular, quit
Interchange rows k and s (all columns)
for i = k + 1 to n do

aik = aik/akk
for j = k + 1 to n do

aij = aij − aikakj

The algorithm requires
∑n−1

k=1(n−k) =
∑n−1

k=1 k = n(n−1)/2 ≈ n2/2 comparisons in addition
to the flops of the algorithm without pivoting. Asymptotically, it has the same cost as the no
pivoting algorithm, i.e. n3/3. An example of GE and LU factorization without pivoting is shown
in Appendix C. The steps of GE with pivoting can be expressed as

Ax = b

A(1)x = M (1)P1Ax = M (1)P1b = b(1)

A(2)x = M (2)P2M
(1)P1Ax = M (2)P2M

(1)P1b = b(2)

A(3)x = M (3)P3M
(2)P2M

(1)P1Ax = M (3)P3M
(2)P2M

(1)P1b = b(3)

Hence M (3)P3M
(2)P2M

(1)P1A = U . It can be shown that this relation is equivalent to PA = LU
where P = P3P2P1, L is unit lower triangular and U is upper triangular. Note thatM (3)P3M

(2)P2M
(1)P1

is not necessarily lower triangular. However, L−1 and M (3)P3M
(2)P2M

(1)P1 are the same only with
some or all columns in different order. We can show that L−1 = M (3)P3M

(2)P2M
(1)P1P

−1.

Generalizing this to n× n matrices, at the kth step of GE with pivoting, we have

A(k)x = M (k)PkM
(k−1)Pk−1 · · ·M (1)P1Ax = M (k)PkM

(k−1)Pk−1 · · ·M (1)P1b = b(k) (7)

From above, we have
A(k)x = M (k)PkM

(k−1)Pk−1 · · ·M (1)P1A = U (8)

It can be shown that this is equivalent to

PA = LU, where P = Pn−1Pn−2 · · ·P1 (9)

and L is unit lower triangular. It can also be shown that

L = PP1(M
(1))−1P2(M

(2))−1 · · ·Pn−1(M
(n−1))−1 (10)

L−1 = M (n−1)Pn−1M
(n−2)Pn−2 · · ·M (1)P1P

−1 (11)

The matrices Pk are derived from I by interchanging two rows and are called elementary
permutation matrices. As permutation matrices, they are also orthogonal: P−1

k = P ⊺
k . As

elementary permutation matrices, they are also symmetric: Pk = P ⊺
k .

3 Solving Linear Systems 23

Thus we have Pk = P−1
k , PkPk = I, and so Pk are idempotent matrices. The matrix

P = Pn−1Pn−2 · · ·P1 is a permutation matrix and therefore orthogonal. However, it si neither
necessarily elementary permutation matrix nor necessarily symmetric.

There are two ways of solving Ax = b on GE with pivoting (GEpiv). The first applies GEpiv
to A and b simultaneously, and obtains an upper triangular matrix U and a transformed vector
c = b(n−1), such that Ax = b (or [A : b]) is equivalent to Ux = c (or [U : c]), then applies back
substitution to Ux = c to compute x. In this case, the multipliers are computed, but do not need
to be stored. Note that when GEpiv is applied to A and b, both the row permutations and the
elimination operations are applied to both A and b. The permutation matrix P (or the ipiv vector)
does not need to be stored for the solution process.

The second applies GEpiv to A, and obtains the L and U factors and the permutation matrix
P such that PA = LU , then applies forward substitution to Lc = Pb to compute an intermediate
vector c, and then applies backward substitution to Ux = c to compute x. In this case, the
multipliers are computed and stored in the strictly lower triangular part of A. The permutation
matrix P is not explicitly stored, but the vector ipiv is, and from that the relevant information
can be extracted.

Similar to our discussion before, the two ways are mathematically equivalent and involve the
same computational cost. However, when we need to solve linear systems with the same matrix
and different right-hand side vectors, we should adopt the second way, apply GE/LU once, store
the L and U factors and the ipiv vector, then apply row interchanges and a pair of f/s and b/s to
each right-hand side vector. Then the cost for solving m linear systems of size n×n with the same
matrix is n3/3 +m(n2/2 + n2/2) = n3/3 +mn2 flops, n2/2 +mn divisions and n2/2 comparisons.

3.5.1 Scaling and GE/LU with Partial Pivoting

Consider now using GE/LU with pivoting to solve Ax = b with[
−1 1000
1 1

]
b =

[
1000
2

]
It is clear that GEpiv applied to Ax = b will not interchange the rows and GEpiv will produce
the same results as no pivoting GE. This discrepancy comes from bad scaling. If we scale each
equation so that the largest element in each row is equal to 1, and then apply GEpiv in three
decimal digits floating-point arithmetic, we will get reasonably accurate results of GEpiv applied
to Ax = b with A and b given above. The operation requires n(n− 1) ≈ n2 comparisons and equal

Algorithm 11 Gauss Elimination with Scaled Partial Pivoting Algorithm for General n × n
Matrices
for i = 1 to n do

t = maxnj=1{|aij|}
if t = 0 then

The system is singular, quit
for j = 1 to n do

aij = aij/t
Apply GEpiv

number of divisions in addition to flops and comparisons required by GEpiv. There are variations

3 Solving Linear Systems 24

of this algorithm that save about half of the divisions by scaling only the multipliers as they are
generated during the elimination process. The bottom-line is that it requires approximately the
same amount of work as the no-pivoting algorithm (n3/3). Thus scaled partial pivoting (though
it does not always improve the results as magically as in the example), is considered a useful
technique for improving the accuracy of GE.

3.5.2 Complete Pivoting

The complete pivoting strategy is that, at the kth GE step, before the multipliers at column
k, rows k + 1, ..., n are computed, a search in the submatrix of size (n − k + 1) × (n − k + 1)
is performed, to identify the largest in absolute value element. This element becomes the pivot.
Assume the pivot belongs to row l and column m, i.e. |alm| = max{|aij|, i = l, ..., n, j = k, ..., n}.
If l ̸= k, rows k and l are interchanged, and if m ̸= k, columns k and m are interchanged.

Algorithm 12 Gauss Elimination with Complete Pivoting Algorithm for General n× n Matrices

for k = 1 to n− 1 do
(l,m) = argmaxni=k,j=k{|aij|}
if alm = 0 then

The system is singular, quit
Interchange rows k and l, columns k and m
for i = k + 1 to n do

aik = aik/akk
for j = k + 1 to n do

aij = aij − aikakj

The algorithm requires
∑n−1

k=1(n − k)2 =
∑n−1

k=1 k
2 = n(n − 1)(2n − 1)/6 ≈ n3/3 = O(n3)

comparisons in addition to the flops required by the no-pivoting algorithm. Asymptotically, it
requires approximately twice the amount of work of the no-pivoting algorithm (n3/3). For this
reason, although complete pivoting can improve the accuracy of GE on certain pathological cases
futher than scaled partial pivoting, it’s rarely used.

3.5.3 Effect of Pivoting to Special Matrices

For symmetric matrices, row (or column or complete) pivoting may destroy the symmetry of
a matrix. Symmetric pivoting (same reordering to both rows and columns) preserves symmetry.

For banded matrices ((l, u)-banded), partial (row or column) pivoting may alther the band-
width, but preserves some bandedness, more specifically, row pivoting applied to an (l, u)-banded
matric generates (at most) l additional non-zero superdiagonals, i.e. U is (0, u+ l)-banded, while L
has at most l+1 non-zero elements per column. Column pivoting applied to an (l, u)-banded ma-
trix generates (at most) u additional non-zero subdiagonals, i.e. L is (u+ l, 0)-banded. Complete
pivoting may destroy any bandedness.

A Gauss Elimination algorithms 25

A Gauss Elimination algorithms

Algorithm 13 Gauss Elimination (Detailed Version)

Initialize A(0) = A
for k = 1 to n− 1 do ▷ For each A(k)

for i = k + 1 to n do ▷ For each row i below the pivot
if a

(k−1)
kk ̸= 0 then ▷ Calculate the multiplier if the pivot is not 0

t = a
(k−1)
ik /a

(k−1)
kk

else
quit

for j = 1 to n do ▷ For each column j in row i of the new matrix
akij = a

(k−1)
ij − t · a(k−1)

kj ▷ Compute the new element aij of A
(k) (Row operation)

Algorithm 14 Gauss Elimination (Saving Memory)

Given matrix A
for k = 1 to n− 1 do

for i = k + 1 to n do
if akk ̸= 0 then

t = aik/akk
else

quit
for j = 1 tp n do

aij = aij − t · akj

Algorithm 15 Gauss Elimination (Saving Time)

Given matrix A
for k = 1 to n− 1 do ▷ For each A(k)

for i = k + 1 to n do ▷ For each row i below the pivot
if akk ̸= 0 then ▷ Calculate the multiplier if the pivot is not 0

t = aik/akk
else

quit
for j = k + 1 tp n do ▷ No need to compute the zeros, update aij

aij = aij − t · akj

B Properties of Triangular Matrices

(i) The product of lower (upper) triangular matrices is a lower (upper) triangular matrix.

(ii) The product of unit lower (upper) triangular matrices is a unit lower (upper) triangular
matrix.

(iii) The inverse of a non-singular lower (upper) triangular matrix is a lower (upper) triangular
matrix

C Gauss Elimination (GE) and LU factorization with Pivoting Example 26

(iv) The inverse of a unit lower (upper) triangular matrix is a unit lower (upper) triangular
matrix.

C Gauss Elimination (GE) and LU factorization with

Pivoting Example

Consider the linear system Ax = b, where

A =

1 −2 −4 −3
2 0 −1 2
−1 2 2 2
3 0 −3 6

 , x =

x1

x2

x3

x4

 , b =

2
−1
4
9

The system can also be described with the augmented matrix

[A : b] =

1 −2 −4 −3 : 2
2 0 −1 2 : −1
−1 2 2 −1 : 4
3 0 −3 6 : 9

Let perm vec p = [1, 2, 3, 4].

Recall that relation ipiv(k) = s denotes that rows k and s were interchanged in the kth step
of the algorithm. The part of A below the stair step belongs to L, but we overlay the elements
of L within A(k) for being concise and for indicating that we save memory when doing the related
computation.

For k = 1, Find along column 1 (rows 1 to 4) the maximum in absolute value element, and
interchange its row with row 1.

1 −2 −4 −3 : 2
2 0 −1 2 : −1
−1 2 2 −1 : 4
3 0 −3 6 : 9

→

3 0 −3 6 : 9
2 0 −1 2 : −1
−1 2 2 −1 : 4
1 −2 −4 −3 : 2

 P1 =

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

ipiv = [4, ·, ·](perm vec p = [4, 2, 3, 1])

ρ
(1)
2 ← ρ2 − 2/3ρ1

ρ
(1)
3 ← ρ3 + 1/3ρ1

ρ
(1)
4 ← ρ4 − 1/3ρ1

[A(1) : b(1)] =

3 0 −3 6 : 9
2/3 0 1 −2 : −7
−1/3 2 1 1 : 7
1/3 −2 −3 −5 : −1

C Gauss Elimination (GE) and LU factorization with Pivoting Example 27

For k = 2, Find along column 2 (rows 2 to 4) the maximum in absolute value element, and
interchange its row with row 2.

3 0 −3 6 : 9
2/3 0 1 −2 : −7
−1/3 2 1 1 : 7
1/3 −2 −3 −5 : −1

→

3 0 −3 6 : 9
−1/3 2 1 1 : 7
2/3 0 1 −2 : −7
1/3 −2 −3 −5 : −1

 P2 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

ipiv = [4, 3, ·](perm vec p = [4, 3, 2, 1])

ρ
(2)
3 ← ρ

(1)
3 − 0ρ

(1)
2

ρ
(2)
4 ← ρ

(1)
4 + 2/2ρ

(1)
2

[A(2) : b(2)] =

3 0 −3 6 : 9
−1/3 2 1 1 : 7
2/3 0 1 −2 : −7
1/3 −1 −2 −4 : 6

For k = 3, Find along column 3 (rows 3 to 4) the maximum in absolute value element, and

interchange its row with row 3.
3 0 −3 6 : 9
−1/3 2 1 1 : 7
2/3 0 1 −2 : −7
1/3 −1 −2 −4 : 6

→

3 0 −3 6 : 9
−1/3 2 1 1 : 7
1/3 −1 −2 −4 : 6
2/3 0 1 −2 : −7

 P3 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ipiv = [4, 3, 4](perm vec p = [4, 3, 1, 2])

ρ
(3)
4 ← ρ

(2)
4 + 1/2ρ

(2)
3

[A(3) : b(3)] =

3 0 −3 6 : 9
−1/3 2 1 1 : 7
1/3 −1 −2 −4 : 6
2/3 0 −1/2 −4 : −4

Then we have

L =

1 0 0 0
−1/3 1 0 0
1/3 −1 1 0
2/3 0 −1/2 1

 U =

3 0 −3 6
0 2 1 1
0 0 −2 −4
0 0 0 −4

The relation A = LU no longer holds but we have PA = LU , where P = P3P2P1.

D Computer Arithmetic, Gauss Elimination (GE) and LU factorization Abridged 28

D Computer Arithmetic, Gauss Elimination (GE) and

LU factorization Abridged

D.1 Computer Arithmetic

Rb(t, s) represents the floating-point numbers of the form f × be where f the mantissa has
t bits including the sign (If the mantissa is normalized, 1 does not need to be stored and is not
included), and e the exponent has s bits including the sign. The distribution of numbers is denser
towards 0 while the distribution in the same exponent is uniform.

εmach is the smallest non-normalized floating-point number of the form b−i for i some positive
integer, with the property fl(1 + εmach) > 1. To find εmach of a floating-point system with t base b
digits precision, the floating point representation of 1 with base b mantissa is 1 = 0. 100 · · · 0︸ ︷︷ ︸

t digits

×b1.

Then construct εmach with the smallest possible mantissa and the smallest possible exponent so that
1+εmach > 1. Based on the type of rounding used, εmach is b

−t, b−t−1, or b−t+1. Add the exact value
of these guesses to 1 and after rounding, check if the sum is greater than 1. If so, the corresponding
guess is εmach. In general, εmach = b1−t if chopping is assumed, and εmach = (1/2)b1−t if traditional
rounding is assumed. (1/2)b1−t < εmach ≤ b1−t(εmach = (1/2)b1−t + b−t) if proper rounding is
assumed.

For a computer system that uses decimal floating-point arithmetic with t digits mantissa
(plus one digit for the mantissa sign) and s digit exponent (plus one digit for the exponent sign),
overflow and underflow levels are computed as follows.

Nmax = 0.(aa · · · a︸ ︷︷ ︸
t digits

)b × b(

s digits︷ ︸︸ ︷
aa · · · a)b (12)

Nmax = 0.(10 · · · 00︸ ︷︷ ︸
t digits

)b × b−(

s digits︷ ︸︸ ︷
aa · · · a)b (13)

where a = b− 1. We have that Rb(t, s) ⊂ [−OFL,−UFL] ∪ {0} ∪ [UFL,OFL].

A common problem in computation is catastrophic cancellation. Adding nearly opposite
numbers may result in having no correct digits at all. To avoid this, the conjugate of square roots
can be multiplied to the original expression, or the original expression can be rewritten with the
rules of trigonometry, including the following

sin(a± b) = sin(a) cos(b)± cos(a) sin(b)

cos(a± b) = cos(a) cos(b)∓ sin(a) sin b

sin2(a) =
1− cos(2a)

a

cos2(a) =
1 + cos(2a)

a

The factor κf =
∣∣∣xf ′(x)

f(x)

∣∣∣ is the condition number of f and is a measure of the relative

sensitivity of the computation of f(x) on relatively small changes in x. Check cases where the
numerator is large and when the denominator is small. L’Hopital’s rule is sometimes useful when
checking limits.

D Computer Arithmetic, Gauss Elimination (GE) and LU factorization Abridged 29

D.2 GE/LU and Operation Counts

The general procedure for different kinds of computations

Forward substitution xi =
(
bi −

∑i−1
j=1 aijxj

)
/aii

Backward substitu-
tion

xi =
(
bi −

∑n
j=i+1 aijxj

)
/aii

GE / LU To compute A(k+1) from A(k), ρ
(k+1)
i ← ρ

(k)
i − (a

(k)
ik /a

(k)
kk)ρ

(k)
k+1 where

i ≥ k + 2. Then A = LU and hence Lc = b and Ux = c

GE with partial
(row) pivoting

To compute A(k), find along column k the largest element in abso-
lute value and exchange that row with row k. Update ipiv, where
ipiv(k) = s denotes that row s is exchanged with row k at the kth
step. Also create Pk which is the identity matrix but with rows s
and k exchanged. Then apply GE. PA = LU where P = Pn−1 · · ·P1.
Solve PAx = Pb by Ux = c and Pc = Lb.

GE with scaled par-
tial (row) pivoting

For each row i, find the maximum element in absolute value
|amax, i|. Divide each element in row i by |amax, i|. Also create
D = diag{1/|amax, i|}. Then apply GEpiv. PDA = LU where
P = Pn−1 · · ·P1. Solve PDAx = PDb by Lc = PDb and Ux = c

Obtaining Choleski
factor C of symmet-
ric matrix A

Apply GE to A and obtain its L and U factors. D = diag{Uii}. Let
E = D1/2 then C = LE such that A = CC⊺. C is the Choleski factor
of A.

Table 3: Operation counts of different type of computations

The operation counts of different type of computations are summarized in the following table

Standard matrix-matrix multiplication
C = AB where A ∈ Rl×m and B ∈ Rm×n

lnm flops

Matrix inverse n3 flops and 3n2/2 divisions
Forward substitution n2/2 flops and n divisions
Backward substitution n2/2 flops and n divisions
Solving a general linear system by GE GE: n3/3 flops and n2/2 divisions + simultaneous

processing of RHS vector: n2/2 + b/s = n3/3 + n2

flops and n2/2 + n divisions
Solving a general linear system by LU GE: n3/3 flops and n2/2 divisions + f/s + b/s =

n3/3 + n2 flops and n2/2 + n divisons
GEpiv n2/2 comparisons + GE

Table 4: Operation counts of different type of computations

	Introduction
	Computer Arithmetic
	(Human) Representation of Nonnegative integers
	(Human) Representation of Reals
	Computer Representation of Numbers
	Data and Computational Error

	Solving Linear Systems
	Gaussian Elimination
	Forward substitution algorithm for n n lower-triangular matrices
	Backward substitution algorithm for n n upper-triangular matrices
	Gauss Elimination

	LU Decomposition
	Symmetric Matrices
	Symmetric Positive Definite Matrices
	Banded Matrices

	LU Factorization for Computing the Inverse of a Matrix
	Summary
	Gauss Elimination with Pivoting
	Scaling and GE/LU with Partial Pivoting
	Complete Pivoting
	Effect of Pivoting to Special Matrices

	Gauss Elimination algorithms
	Properties of Triangular Matrices
	Gauss Elimination (GE) and LU factorization with Pivoting Example
	Computer Arithmetic, Gauss Elimination (GE) and LU factorization Abridged
	Computer Arithmetic
	GE/LU and Operation Counts

